South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 2 (2021), pp. 153-164

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

OPERATION APPROACHES ON SPECIFIC OPEN SETS

P. Gnanachandra and A. Muneesh Kumar

Centre for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi, Tamil Nadu, INDIA

E-mail: pgchandra07@gmail.com, muneeshkumarar@gmail.com

(Received: Sep. 18, 2020 Accepted: Jul. 23, 2021 Published: Aug. 30, 2021)

Abstract: In this paper, we shall define the properties for arbitrary topological spaces such as $\alpha_{(\lambda,\lambda')}$ -connected spaces and μ_{Ω} -compact spaces and shall prove the appropriate theorems with counter examples. Also we established that, $\alpha_{(\lambda,\lambda')}$ -locally connectedness is an $\alpha_{(\lambda,\lambda')}$ -open hereditary and we conclude that γ -operation defined by Ogata is an restriction of λ -operation.

Keywords and Phrases: $\alpha_{(\lambda,\lambda')}$ -open sets, $\alpha_{(\lambda,\lambda')}$ -connected spaces, Ω -open sets, μ_{Ω} -open sets and μ_{Ω} -compact spaces.

2020 Mathematics Subject Classification: 54A05, 54A15, 54B17.

1. Introduction

In 1979, Kasahara [15] initiated the concept of an operator (α) associated to a topology and gave some definitions which are equivalent to the usual ones when the operator involved is the identity operator. In 1991, Ogata [24] called the operation α as γ -operation on τ and defined and investigated the concept of operation-open sets, that is γ -open sets. He defined the complement of a γ -open subset of a space X as γ -closed. He also proved that the union of any collection of γ -open sets is γ -open but the intersection of any two γ -open sets need not be γ -open. Therefore the collection of γ -open sets need not be a topology on X. Krishnan. et al. [17] and [18] defined two types of sets called γ -preopen and γ -semiopen sets of a topological space (X, τ) respectively. Kalaivani. et al. [14] defined the notion of α - γ -open sets. Basu. et al. [8] used the operation γ to introduce γ - β -open sets. Also Carpintero. et al. [10] defined the notation of γ -b-open sets of a topological